FAVORSKII-TYPE REARRANGEMENT OF α-CHLORO KETIMINES
Norbert De Kimpe,<sup>\*,1</sup> Roland Verhé, Laurent De Buyck, Luc Moëns and Niceas Schamp
Laboratory of Organic Chemistry, Faculty of Agricultural Sciences, State University of Gent, Coupure 533, B-9000 Gent, Belgium

<u>Abstract</u> : The first examples of the Favorskii-type rearrangement of  $\alpha$ -monochloro ketimines are reported. The regiospecific opening of the intermediate cyclopropylideneamines parallels the opening of cyclopropanones under Favorskiiconditions.

The base-induced skeletal rearrangement of  $\alpha$ -halo ketones into carboxylic acid derivatives is well-known as the Favorskii rearrangement, to which much mechanistic research has been devoted.<sup>2</sup> The chemistry of the nitrogen analogues of  $\alpha$ -halo ketones, i.e.  $\alpha$ -halo imines, has not been fully exploited in synthetic and mechanistic organic chemistry.<sup>3</sup> Accordingly, only two reports on the Favorskii-type rearrangement of  $\alpha$ -halo ketimines have been reported hitherto, namely, first, the alkoxide induced stereospecific conversion of  $\alpha, \alpha$ -dichloro-



- a X=Br; R<sub>1</sub>=t-Bu; R<sub>2</sub>=H; R=alkyl, aryl
- b X=C1; R<sub>1</sub>=Me; R<sub>2</sub>=H; R=<u>i</u>-Pr
- <u>c</u> X=Cl; R<sub>1</sub>=Me; R<sub>2</sub>=H; R=t-Bu
- <u>d</u> X=Cl; R<sub>1</sub>=R<sub>2</sub>=Me; R=<u>i</u>-Pr
- e X=Cl; R<sub>1</sub>=Ph; R<sub>2</sub>=H; R=<u>i</u>-Pr

methylketimines into cis- $\alpha$ , $\beta$ -unsaturated imidates,<sup>4</sup> and, second, the <u>t</u>-butoxide induced rearrangement of sterically hindered  $\alpha$ -bromoketimines (e.g. <u>la</u>) into

the corresponding carboxylic amides.<sup>5</sup> It is the latter paper which prompted us to uncover our own results in this field.

We have found that  $\alpha$ -chloro ketimines <u>lb-d</u> rearrange with potassium <u>t</u>-butoxide in tetrahydrofuran into the branched carboxylic amides <u>3a-e</u> (yields 62-71 %). This is the first report of the Favorskii-type rearrangement of  $\alpha$ -monochloro ketimines. Under the same circumstances, bulky substituted  $\alpha$ -bromo ketimines <u>la</u> were recently found to afford 1,3-dehydrobromination with formation of the isolable cyclopropylideneamines <u>2a</u>,<sup>5,6</sup> i.e. the nitrogen analogues of cyclopropanones. Secondary  $\alpha$ -chloro ketimines <u>lb,c</u> (R<sub>1</sub>=CH<sub>3</sub>; R<sub>2</sub>=H; R=<u>i</u>-Pr, <u>t</u>-Bu) rearranged under mild conditions (RT, 2 hrs), but tertiary  $\alpha$ -chloro ketimines <u>ld</u> (R<sub>1</sub>=R<sub>2</sub>=CH<sub>3</sub>; R=<u>i</u>-Pr) required prolonged heating to induce rearrangement ( $\Lambda$  48 hrs).

N-(3-chloro-2-butylidene)isopropylamine <u>1b</u> underwent a similar skeletal rearrangement into amide <u>3b</u> by refluxing with potassium hydroxide in dioxane, while a competition between Favorskii-type rearrangement and elimination-Michael addition was observed with potassium <u>t</u>-butoxide in <u>t</u>-butanol. After aqueous work-up, the reaction led to a 3:1 mixture of  $4-\underline{t}$ -butoxy-2-butanone <u>4</u> and Nisopropyl 2-methylpropanamide <u>3b</u>, respectively.



Several interactions of strong bases, e.g. DABCO or sodium methoxide, in non-protic solvents (benzene, THF, ether, diisopropyl ether) have been tested towards  $\alpha$ -chloro ketimines, but only in the case of the activated  $\alpha$ -phenyl- $\alpha$ chloro ketimine <u>le</u> (R<sub>1</sub>=Ph; R<sub>2</sub>=H; R=<u>i</u>-Pr) consumption of starting material was observed. In the latter case, the reaction of sodium methoxide in tetrahydrofuran under reflux (24 hrs) furnished the rearranged methyl imidate <u>5</u> in nearly quantitative yield.



Although evidence was gained that the rearrangement of  $\alpha$ -halo ketimines into amides <u>3</u> occurs via cyclopropylideneamines <u>2</u> by the isolation of the latter bulky substituted derivatives  $(R_1=\underline{t}-Bu)$ , <sup>5,6</sup> we provide an alternative evidence for a Favorskii-type rearrangement. Indeed, an alternative reaction pathway would be the semi-benzilic rearrangement. While both mechanisms would give branched amides <u>3</u> with substrates <u>1</u>, the semi-benzilic rearrangement would produce a linear amide (e.g. <u>9</u>) when an  $\alpha$ -chloromethyl ketimine, like <u>6</u>, is used as starting material. No trace of the linear amide <u>9</u> could be detected when N-(1-chloro-2-pentylidene) isopropylamine <u>6</u> was brought into reaction with potassium <u>t</u>-butoxide in tetrahydrofuran (RT, 2 hrs). Instead, the Favorskii amide <u>7</u> was isolated in 21 % yield (GLC) next to the  $\alpha$ -substitution product, i.e. 1-<u>t</u>butoxy-2-pentanone <u>8</u> (71 %), the latter resulting from hydrolysis of the intermediate  $\alpha$ -t-butoxyketimine.



From the results presented in this paper, it seems that the intermediate aliphatic cyclopropylideneamines 2 are opened in such a way as to produce the most stable carbanion, i.e. the one leading to the more branched carboxylic

amide. However, the directory influence of a phenyl substituent  $(R_1=Ph)$  caused the intermediate <u>2e</u> to open at the more branched side, giving rise to the more stable benzylic anion. This reactive behaviour parallels the ring opening of the corresponding cyclopropanones.<sup>2b,7,8</sup>

We are currently investigating more facets of the rearrangements discussed in this paper.

## Acknowledgement

We are indebted to the Belgian "Nationaal Fonds voor Wetenschappelijk Onderzoek" for financial support to the laboratory.

## References

- "Bevoegdverklaard Navorser" (Research Associate) of the Belgian "Nationaal Fonds voor Wetenschappelijk Onderzoek".
- 2. a) A. S. Kende, Org. Reactions, <u>11</u>, 261 (1960); b) A. A. Akhrem, T. K. Ustynyuk and Y. A. Titov, Russ. Chem. Rev., <u>39</u>, 732 (1970) and refs. cited therein.
- 3. For reviews see : N. De Kimpe and N. Schamp, Org. Prep. Proced. Int., <u>11</u>, 115 (1979); N. De Kimpe, R. Verhé, L. De Buyck and N. Schamp, Org. Prep. Proced. Int., <u>12</u>, 49 (1980).
- 4. N. De Kimpe and N. Schamp, Tetrahedron Letters, 3779 (1974); N. De Kimpe and N. Schamp, J. Org. Chem., 40, 3749 (1975).
- 5. H. Quast, R. Frank, H. Heublein and E. Schmitt, Liebigs Ann. Chem. 1814 (1980).
- 6. H. Quast, E. Schmitt and R. Frank, Angew. Chem., <u>83</u>, 728 (1971).
- B. Bakker, H. van Ramesdonck, H. Steinberg and T. de Boer, Rec. Trav. Chim. Pays-Bas, <u>94</u>, 64 (1975); F. G. Bordwell and J. Almy, J. Org. Chem., <u>38</u>, 571 (1973).
- C. Rappe, L. Knutsson, N. J. Turro, R. B. Gagosian, J. Am. Chem. Soc., <u>92</u>, 2032 (1970).

(Received in UK 19 February 1981)

1840